

Static CO₂ geological storage capacity estimation

Sam Holloway BGS

Why would anyone want to make an estimate of potential for geological storage of CO₂?

- In the IEA Blue Map, CCS provides 19% CO₂ mitigation by 2050 (8.17 billion tonnes annually)
- add 25%
 additional CO₂
 generated by
 capture = approx
 10,000 Sleipners,
 3400 large CCS
 projects

What do policymakers want from an estimate?

- The answers to three questions in order to determine the role that CCS can play in a portfolio of greenhouse gas mitigation options
- How much storage capacity can be relied on at a range of different costs?
- Where is that storage capacity?
- When will it be available?
 - Capacity
 - "Relied on" therefore need to understand risk/ geological uncertainty
 - Need to apply cost model
 - Ideally end up being able to produce storage costs curves at different levels of risk: "we are confident that X million tonnes capacity is available at cost Y"

CO₂ storage capacity estimates - understanding resources and reserves

- A resource is anything that is available and potentially useful to mankind
 - Its presence does not tell us anything about how much of it can be exploited economically
- Reserves are that part of a resource that can be exploited economically at present with current technology

Comparing existing CO₂ storage capacity estimates

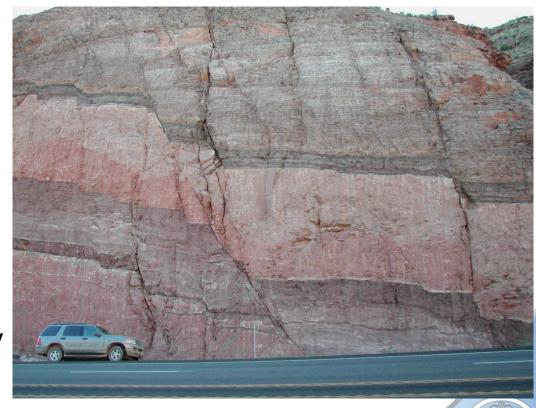
- Difficult because do not use a standard methodology
- Most estimates are resource estimates no economic dimension
 - Different questions asked
 - Total accessible CO₂ storage resource
 - Resource in structural/stratigraphic traps
 - Resource in structural compartments
- IEA initiative to produce a roadmap for CO₂ storage capacity estimation methodologies that will answer the policymakers' questions

What is a static capacity estimate?

- An estimate of storage capacity that:
 - does not take into account the movement of CO₂ in the reservoir/ involve any dynamic simulation of CO₂ injection?
 - does not take account of the time it might take to fill a potential storage reservoir?
 - does not require much in the way of resources "cheap and cheerful"?
- Static estimates may be probabilistic or deterministic

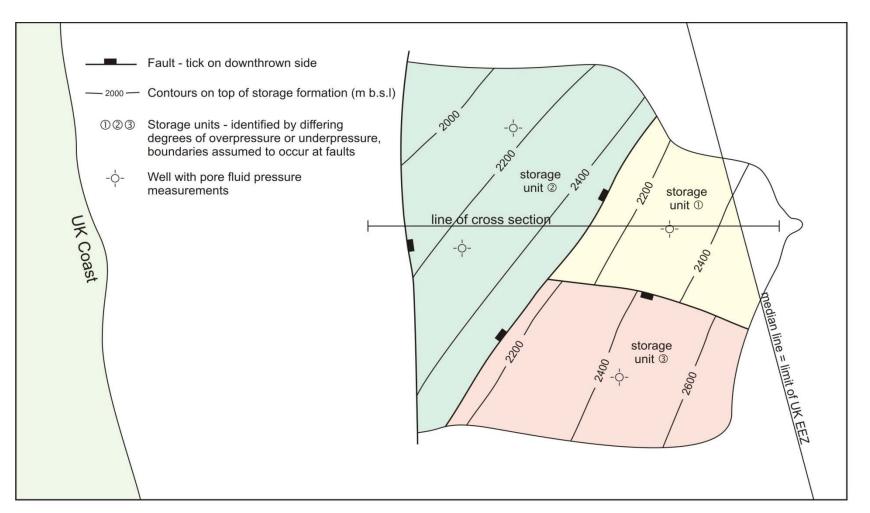
Which trapping mechanisms are important over injection timescales?

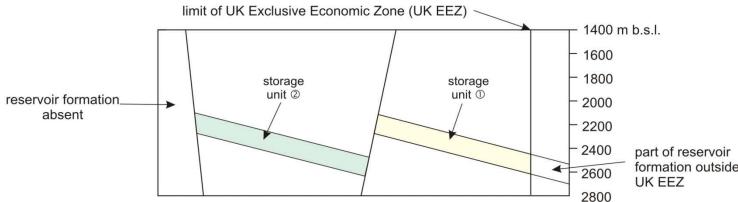
- Structural and stratigraphic trapping of free supercritical CO₂
- Trapping as a residual saturation
- Dissolution?
- Chemical reaction?
- Adsorption?
- Simplify problem by ignoring geochemical reaction and adsorption, ?dissolution
- Remaining problem then one of residual saturation trapping and structural/stratigraphic trapping

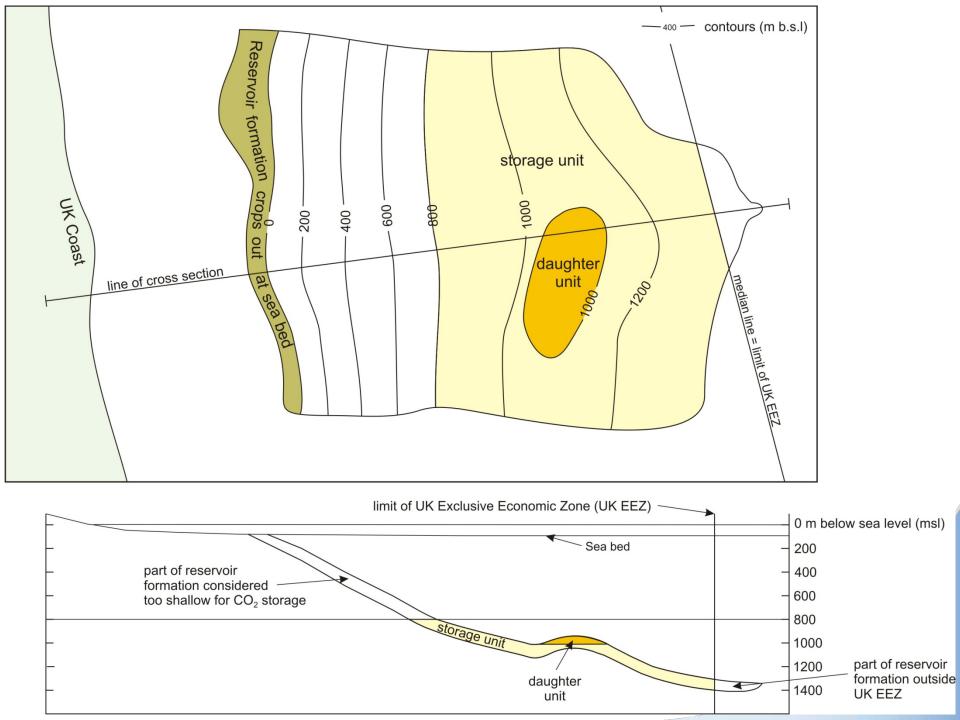

Methodology

- Identify all reservoir formations
- Determine which fractions of each reservoir formation meet basic criteria for storage
 - Sealed above, depth >800 m, ?minimum reservoir quality
 - Reject parts that don't
- Divide remainder into units of assessment
- Characterise units of assessment
 - Reservoir characteristics, boundaries, risks
- Determine their pore volume
- Apply simple formulae to estimate their storage capacity
 - Different formulae for units with closed boundaries, open boundaries, traps

Boundary Conditions


- The boundaries of an aquifer storage unit are the overburden, the underlying strata and the lateral margins of the unit (faults, pinchouts, etc.)
- The boundary conditions control brine displacement and pressure build-up, and hence CO₂ storage capacity

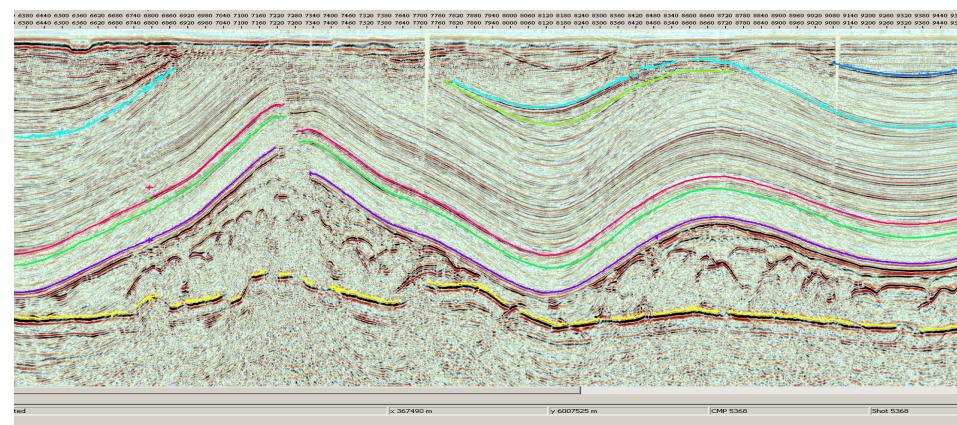



End-member boundary conditions, UK examples

- To all intents and purposes totally closed
 - E.g. Fulmar compartments in Central Graben known from varying degrees of overpressure
- Open formation outcropping at sea bed with inferred good internal communication
 - E.g. Forties Sandstone Member, Utsira Sand
- In reality probably many intermediates
 - ?Leman Sst compartments may break down when sufficient pressure difference across their boundaries
 - these treated as closed in UKSAP study

Storage efficiency factors for open formations

- Great uncertainty in reality possibly quite sitespecific
- Storage efficiency factors used in UKSAP discussed in next presentation
- Some previous estimates use IEAGHG 2009 study
- Factors used commonly around 2% of pore volume or less (range 0.1- >6%)
- Significantly higher than pressure cells as might be expected because fluid can escape through seabed, creating space for CO₂.


Hydrocarbon fields and other traps

- Can achieve higher CO₂ saturations than in other parts of formations
- Potential calculated separately but
 - Where parent unit is a pressure cell, take into account pressure effect on other (saline waterbearing) parts of the formation
 - Where parent unit is an open unit, subtract volume from parent unit before estimating its capacity

Risk and geological uncertainty

Leakage a risk for buoyant storage – can be expressed as a distribution of the likelihood of the pore volume that acts as a trap. Basically a judgement by the assessor

Done that, what have I got?

- An estimate of the "CO₂ storage resource"
- How do I compare resource estimates across different countries?
 - If I consider pressure build-up can be managed and therefore it is solely an economic matter I could call this the "Technically Accessible CO₂ Storage Resource" © USGS, useful in laissez-faire economies
 - In the UKSAP project, the estimate assumes pressure mgmt wells will not be used (subset of TASR - Netherlands estimate makes same assumption)
 - Some estimates only consider storage in traps

Economic dimension

- How to answer the policymakers question: "How much CO₂ storage capacity can be relied on a particular cost?"
 - Need to construct marginal storage cost curve
 - Needs good cost model
 - Advantage of assessment unit concept is that it provides a manageable basis for estimating costs
 - Dependent to some degree on concepts used to define transport and storage,
 - e.g. straight line transport from nearest gas import terminal to storage site

Improving static capacity estimates

- In the next presentation you will find out how to convert these simple estimates into a sophisticated analysis
 - Storage efficiency factors
 - Injectivity
 - CO₂ migration
 - Accounting for rate of filling

